Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 143
1.
Food Chem X ; 22: 101355, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38665627

The free and bound phenolic profiles and their bioactivities of radix puerariae thomsonii (RPT) cultivars from 7 growing regions in China were investigated. Total phenolic and flavonoid contents were from 148.71 to 435.32 mg gallic acid equivalents /100 g dry weight and 561.93 to 826.11 mg catechin equivalents /100 g dry weight, respectively, with 20.64-38.28% and 32.77-47.29% contribution from bound fractions. Sixteen phenolic compounds were detected in RPTs. Bound fractions contributed 28.15-70.84% to the total antioxidant activities. The cultivars from Qiannan and Guangzhou showed much higher regulatory effects on carbohydrate hydrolyzing enzymes and alcohol metabolizing enzymes than the other cultivars. The bound fractions exhibited equivalent EC50 values for alcohol metabolizing enzymes and IC50 values for carbohydrate hydrolyzing enzymes to the free fractions in RPT cultivars. Therefore, bound phenolics significantly contributed to the potential health benefits of RPT. The results provided information for the utilization of RPT for health promoting purpose.

2.
BMC Musculoskelet Disord ; 25(1): 292, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622682

BACKGROUND: Magnetic resonance imaging (MRI) can diagnose meniscal lesions anatomically, while quantitative MRI can reflect the changes of meniscal histology and biochemical structure. Our study aims to explore the association between the measurement values obtained from synthetic magnetic resonance imaging (SyMRI) and Stoller grades. Additionally, we aim to assess the diagnostic accuracy of SyMRI in determining the extent of meniscus injury. This potential accuracy could contribute to minimizing unnecessary invasive examinations and providing guidance for clinical treatment. METHODS: Total of 60 (n=60) patients requiring knee arthroscopic surgery and 20 (n=20) healthy subjects were collected from July 2022 to November 2022. All subjects underwent conventional MRI and SyMRI. Manual measurements of the T1, T2 and proton density (PD) values were conducted for both normal menisci and the most severely affected position of injured menisci. These measurements corresponded to the Stoller grade of meniscus injuries observed in the conventional MRI. All patients and healthy subjects were divided into normal group, degeneration group and torn group according to the Stoller grade on conventional MRI. One-way analysis of variance (ANOVA) was employed to compare the T1, T2 and PD values of the meniscus among 3 groups. The accuracy of SyMRI in diagnosing meniscus injury was assessed by comparing the findings with arthroscopic observations. The diagnostic efficiency of meniscus degeneration and tear between conventional MRI and SyMRI were analyzed using McNemar test. Furthermore, a receiver operating characteristic curve (ROC curve) was constructed and the area under the curve (AUC) was utilized for evaluation. RESULTS: According to the measurements of SyMRI, there was no statistical difference of T1 value or PD value measured by SyMRI among the normal group, degeneration group and torn group, while the difference of T2 value was statistically significant among 3 groups (P=0.001). The arthroscopic findings showed that 11 patients were meniscal degeneration and 49 patients were meniscal tears. The arthroscopic findings were used as the gold standard, and the difference of T1 and PD values among the 3 groups was not statistically significant, while the difference of T2 values (32.81±2.51 of normal group, 44.85±3.98 of degeneration group and 54.42±3.82 of torn group) was statistically significant (P=0.001). When the threshold of T2 value was 51.67 (ms), the maximum Yoden index was 0.787 and the AUC value was 0.934. CONCLUSIONS: The measurement values derived from SyMRI could reflect the Stoller grade, illustrating that SyMRI has good consistency with conventional MRI. Moreover, the notable consistency observed between SyMRI and arthroscopy suggests a potential role for SyMRI in guiding clinical diagnoses.


Knee Injuries , Meniscus , Tibial Meniscus Injuries , Humans , Tibial Meniscus Injuries/diagnostic imaging , Tibial Meniscus Injuries/surgery , Tibial Meniscus Injuries/pathology , Knee Injuries/diagnostic imaging , Knee Injuries/surgery , ROC Curve , Magnetic Resonance Imaging/methods , Arthroscopy/methods , Menisci, Tibial/surgery , Sensitivity and Specificity
3.
Food Chem ; 450: 139323, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38636386

Radix puerariae thomsonii (RPT) contains many phenolics and exhibits various health benefits. Although the free phenolics in RPT have been identified, the composition and content of bound phenolics, which account for approximately 20% of the total phenolic content, remain unknown. In this study, 12 compounds were isolated and identified from RPT-bound phenolic extracts, of which 2 were novel and 6 were reported first in RPT. ORAC and PSC antioxidant activities of 12 compounds, as well as their effects on alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), α-glucosidase, and α-amylase were evaluated. Genistein exhibited the highest ORAC activity, while daidzin demonstrated superior PSC activity. Five compounds, including two new compounds, exhibited the ability to activate both ADH and ALDH. All the compounds except 4-hydroxyphenylacetic acid methyl ester and 2,4,4'-trihydroxydeoxybenzoin demonstrated inhibitory effects on α-glucosidase and α-amylase. Alkaline hydrolysis and stepwise enzymatic hydrolysis revealed that bound phenolics in RPT mainly exist within starch.

4.
Food Chem ; 445: 138734, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38401310

In this study, litchi polysaccharides were obtained from unfermented or fermented pulp by Lactobacillus fermentum (denoted as LP and LPF, respectively). The differences between LP and LPF in the colonic fermentation characteristics and modulatory of gut microbiota growth and metabolism were investigated with an in vitro fecal fermentation model. Results revealed that the strategies of gut bacteria metabolizing LP and LPF were different and LPF with lower molecular weight (Mw) was readily utilized by bacteria. The monosaccharide utilization sequence of each polysaccharide was Ara > Gla > GalA > GlcA ≈ Glu ≈ Man. Moreover, LPF promoted stronger proliferation of Bifidobacterium, Megamonas, Prevotella, and Bacteroides and higher SCFAs production (especially acetic and butyric acids) than LP. Correlation analysis further revealed that Mw could represent an essential structural feature of polysaccharides associated with its microbiota-regulating effect. Overall, Lactobacillus fermentation pre-treatment of litchi pulp promoted the fermentation characteristics and prebiotic activities of its polysaccharide.


Gastrointestinal Microbiome , Litchi , Microbiota , Male , Humans , Litchi/chemistry , Lactobacillus/metabolism , Fermentation , Polysaccharides/chemistry , Fatty Acids, Volatile/metabolism
5.
J Sci Food Agric ; 104(5): 3139-3146, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38072776

BACKGROUND: Recent studies reveal that dietary fiber (DF) might play a critical role in the metabolism and bioactivity of flavonoids by regulating gut microbiota. We previously found that Shatianyu (Citrus grandis L. Osbeck) pulp was rich in flavonoids and DF, and Shatianyu pulp flavonoid extracts (SPFEs) were dominated by melitidin, obviously different from other citrus flavonoids dominated by naringin. The effects of Shatianyu pulp DF (SPDF) on the microbial metabolism and bioactivity of SPFEs is unknown. RESULTS: An in vitro colonic fermentation model was used to explore the effects of SPDF on the microbial metabolism and antioxidant activity of SPFEs in the present study. At the beginning of fermentation, SPDF promoted the microbial degradation of SPFEs. After 24 h-fermentation, the supplemented SPFEs were almost all degraded in SPFEs group, and the main metabolites detected were the dehydrogenation, hydroxylation and acetylation products of naringenin, the aglycone of the major SPFEs components. However, when SPFEs fermented with SPDF for 24 h, 60.7% of flavonoid compounds were retained, and SPFEs were mainly transformed to the ring fission metabolites, such as 3-(4-hydroxyphenyl) propionic acid, 3-phenylpropionic acid and 3-(3-hydroxy-phenyl) propionic acid. The fermentation metabolites of SPFEs showed stronger antioxidant activity than the original ones, with a further increase in SPDF supplemented group. Furthermore, SPFEs enriched microbiota participating in the deglycosylation and dehydrogenation of flavonoids, while co-supplementation of SPDF and SPFEs witnessed the bloom of Lactobacillaceae and Lactobacillus, contributing to the deglycosylation and ring fission of flavonoids. CONCLUSION: SDPF promote SPFEs to transform to active metabolites probably by regulating gut microbiota. © 2023 Society of Chemical Industry.


Citrus , Flavonoids , Phenols , Propionates , Flavonoids/chemistry , Citrus/chemistry , Antioxidants/metabolism , Fermentation , Dietary Fiber
6.
Plant Physiol ; 194(3): 1906-1922, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-37987562

Salinity is a severe abiotic stress that limits plant survival, growth, and development. 14-3-3 proteins are phosphopeptide-binding proteins that are involved in numerous signaling pathways, such as metabolism, development, and stress responses. However, their roles in salt tolerance are unclear in woody plants. Here, we characterized an apple (Malus domestica) 14-3-3 gene, GENERAL REGULATORY FACTOR 8 (MdGRF8), the product of which promotes salinity tolerance. MdGRF8 overexpression improved salt tolerance in apple plants, whereas MdGRF8-RNA interference (RNAi) weakened it. Yeast 2-hybrid, bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays revealed that MdGRF8 interacts with the transcription factor MdWRKY18. As with MdGRF8, overexpressing MdWRKY18 enhanced salt tolerance in apple plants, whereas silencing MdWRKY18 had the opposite effect. We also determined that MdWRKY18 binds to the promoters of the salt-related genes SALT OVERLY SENSITIVE 2 (MdSOS2) and MdSOS3. Moreover, we showed that the 14-3-3 protein MdGRF8 binds to the phosphorylated form of MdWRKY18, enhancing its stability and transcriptional activation activity. Our findings reveal a regulatory mechanism by the MdGRF8-MdWRKY18 module for promoting the salinity stress response in apple.


Malus , Salt Tolerance , Salt Tolerance/genetics , Malus/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
7.
Food Sci Nutr ; 11(12): 7626-7637, 2023 Dec.
Article En | MEDLINE | ID: mdl-38107145

The antidiabetic activity of saponins extracted from Momordica charantia (MCS) on streptozotocin-induced diabetic mice was investigated in order to elucidate the mechanism of MCS for exerting hypoglycemic effects. Saponins were first extracted from M. charantia L. and their composition was analyzed. The diabetic Kunming mice were fed low-dose saponins from M. charantia L. and high-dose MCS, using normal mice and diabetic mice as controls. Body weight, blood glucose level, oral glucose tolerance, serum C-peptide level, hepatic antioxidant capacity, hepatic glycogen and hexokinase in liver tissues, serum blood lipid level, and alpha-glucosidase activity in small intestines were measured, and microstructure of pancreatic islet was analyzed. The results showed that the total content of seven triterpenoid compounds in MCS was 18.24 µg/mg, with Momordicoside K having the highest content at 11.66 µg/mg. Diabetic mice treated with MCS at 100 and 200 mg/kg body weight daily for 30 days showed a maximum glucose reduction (p < .05) of 12.63% and 26.47%, respectively. MCS significantly decreased levels of postprandial hyperglycemia, serum lipid, α-glucosidase activity, and liver malondialdehyde. Additionally, levels of serum C-peptide and liver glycogen, as well as hexokinase and antioxidant enzyme activity, were significantly increased compared to the diabetic control groups. Histopathological results showed that MCS markedly reduced degenerative changes in islet ß-cells. It is concluded that MCS exerts antidiabetic effects by improved hypoglycemic, hypolipidemic, and antioxidant effects, increased hexokinase activity and glycogen synthesis, and enhanced reparative effects on the histological architecture and insulin secretion function of the pancreas.

8.
J Agric Food Chem ; 71(41): 15087-15096, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37814441

This study aimed to investigate the effects of the lychee pulp-derived dietary fiber-bound phenolic complex (DF-BPC) on a murine model of loperamide-induced constipation and its molecular mechanism associated with gut microbiota modification. DF-BPC supplementation mitigated loperamide-induced dyschezia, intestinal hypomotility, and colonic impairment, as evidenced by the increased gastro-intestinal transit rate and mucus cell counts. By comparison, short-chain fatty acids (SCFAs) contents and relative abundances of associated genera (Butyricimonas, Clostridium, and Lactobacillus) were effectively upregulated following DF-BPC supplementation. Notably, DF-BPC significantly enhanced expressions of G protein-coupled receptor (GPR) 41 and 43, reaching 1.43- and 1.62-fold increase, respectively. Neurotransmitter secretions were simultaneously altered in DF-BPC-treated mice, suggesting upregulation of the SCFAs-GPRs-enteric nervous system pathway. The overexpression of aquaporins (AQP3, 8, and 9) was stimulated partly through GPRs activation. Mild inflammation associated with constipation was inhibited by suppressing LBP-TLR4-NF-κB signaling translocation. These findings suggest that DF-BPC from lychee pulp has the potential to alleviate constipation in mice through modifying the gut microbiome.


Aquaporins , Gastrointestinal Microbiome , Litchi , Mice , Animals , Loperamide/adverse effects , Constipation/chemically induced , Constipation/drug therapy , Fatty Acids, Volatile/pharmacology , Dietary Fiber , Aquaporins/genetics
9.
Viruses ; 15(9)2023 09 08.
Article En | MEDLINE | ID: mdl-37766305

Foamy viruses are members of the Retroviridae family's Spumaretrovirinae subfamily. They induce cell vacuolation and exhibit a foamy pathogenic impact after infecting cells. DACH1 (dachshund family transcription factor 1) is a crucial cytokine linked to tumor development, and is associated with the growth of many different malignant tumor cells. Additionally, DACH1 suppresses pancreatic cell proliferation and is involved in diabetes insulin signaling. Prototype foamy viruses (PFVs) were used for the investigation of the regulatory mechanism of FVs on cellular DACH1 expression. The results show that DACH1 expression in PFV-infected cells was inconsistent at both the transcriptional and protein levels. At the transcriptional level, DACH1 was significantly activated by PFV transactivator Tas, and dual-luciferase reporter gene tests, EMSA, and ChIP assays found a Tas response element of 21 nucleotides in the DACH1 promoter. PFV and Tas did not boost the levels of DACH1 protein in a manner consistent with the high levels of DACH1 transcription expression. It was noted that Tas increased the expression of the Ser/Thr protein phosphatase PPM1E, causing PPM1E-mediated post-translational SUMOylation alterations of DACH1 to prompt DACH1 to degrade. The reason for DACH1 protein degradation is that DACH1 inhibits PFV replication. To sum up, these findings show that PFV upregulated the transcription of DACH1, while urging its protein into PPM1E-mediated SUMOylation, to eliminate the adverse effect of DACH1 overexpression of host cells on viral replication and promote virus survival.


Spumavirus , Trans-Activators , Promoter Regions, Genetic , Proteolysis , Retroviridae/genetics , Spumavirus/physiology , Trans-Activators/genetics , Trans-Activators/metabolism , Transcriptional Activation , Humans
10.
Int J Biol Macromol ; 250: 126258, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37567519

Our study investigated heat pump drying (HPD) effects on phenolic-polysaccharide adducts of three lychee pulp grades, their composition and bound phenolic contents. During HPD, the hexose content in water soluble polysaccharide (WSP) increased continuously, and the pentose and glucuronic acid contents in WSP and dilute alkali soluble pectin (ASP) together with the hexose content in ASP increased initially and then decreased due to polysaccharide hydrolases pectinase, polygalacturonase and cellulase. After HPD, the bound phenolic content in WSP, ASP and water unextractable polysaccharide (WUP) significantly increased. Protocatechualdehyde and 3,4-dihydroxybenzeneacetic acid were newly generated phenolics and the former combined with all the three polysaccharide grades, while the latter selectively combined with only WSP. During HPD, WSP and ASP surface structures were gradually broken and became loose, but WUP surface structure was a complete and rough sheet structure. Alkaline hydrolysis caused sparser, more porous surfaces of the three polysaccharide grades. The polyphenol selectivity could be related to substrate selectivity of endogenous oxidases and the type of phenolic compounds.


Litchi , Tandem Mass Spectrometry , Litchi/chemistry , Hot Temperature , Phenols/chemistry , Polysaccharides/chemistry , Water/chemistry , Hexoses
11.
Food Funct ; 14(16): 7672-7681, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-37540108

Lychee pulp phenolics possess excellent biological activities, however, changes in phenolic substances after microbial treatments are unknown. Herein, lychee pulp was fermented by Lactobacillus plantarum, Lactobacillus rhamnosus, and a mixed strain of the two, followed by an investigation of the products' colonic fermentation. In comparison to single-strain fermentation, mixed-strain fermentation significantly increased catechin and quercetin. In addition, lychee phenolics fermented by mixed strains were more conducive to the growth of gut microbiota. The results of HPLC-DAD showed that colonic fermentation further promoted the release of lychee phenolics. There was a notable increase in the content of gallic acid and quercetin, while multiple phenolics were degraded. Quercetin-3-O-rutinose-7-O-α-L-rhamnoside (QRR) and rutin were catabolized into quercetin by gut microbiota, and 4-hydroxybenzoic acid was produced from the metabolism of QRR and procyanidin B2. Lychee phenolics fermented by mixed lactic acid bacteria were easily metabolized and transformed by gut microbiota. These findings indicate that lychee pulp fermented by mixed lactic acid bacteria possesses probiotic potential, which is of great significance for the development of functional probiotic products.

12.
Food Funct ; 14(14): 6707-6717, 2023 Jul 17.
Article En | MEDLINE | ID: mdl-37404037

Black rice (Oryza sativa L.) is a great source of anthocyanins and dietary fiber and possesses various health-promoting properties. The modulating effect of insoluble dietary fiber (IDF) from black rice on the fermentation of cyanidin-3-O-glucoside (Cy3G) in an in vitro human colonic model, together with the possible microbiota-mediated mechanisms, was investigated. The combined Cy3G and IDF fermentation can promote the biotransformation of Cy3G into phenolic compounds such as cyanidin and protocatechuic acid with stronger antioxidant activities and increase the total production of SCFAs during the fermentation of Cy3G. 16S rRNA sequencing analysis revealed that the addition of IDF modulated the microbiota structure and bloomed Bacteroidota and Prevotellaceae-related genera, which were positively correlated with metabolites of Cy3G, thus potentially regulating the microbial metabolism of Cy3G. The work is of great significance for elucidating the material basis of the health benefits of black rice.


Anthocyanins , Oryza , Humans , Anthocyanins/pharmacology , Anthocyanins/metabolism , Oryza/chemistry , Fermentation , RNA, Ribosomal, 16S/metabolism , Dietary Fiber
13.
Food Chem ; 429: 136875, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37454621

Quercetin 3-O-rutinose-7-O-α-l-rhamnoside (QRR), a characteristic lychee pulp flavonoid, has been linked to diverse bioactivities involving microbial metabolism. By integrating colonic fermentation and mass spectrometry, the catabolites including 7-O-hydroxyethyl-isorhamnetin and 3'-amino-4'-O-methyl-7-O-hydroxyethyl-isorhamnetin were unprecedently identified and unique to QRR metabolism, relative to the structural analog quercetin 3-O-rutinoside (QR) metabolism. These above-described metabolites highlighted a special biotransformation hydroxyethylation in QRR catabolism. QRR was partially deglycosylated into quercetin 3-O-glucoside-7-O-α-l-rhamnoside potentially catalyzed by Bacteroides. QR was more directly degradable to aglycone during colonic fermentation than are QRR. Unlike with QR fermentation, equivalent QRR effectively upregulated concentrations of propionic and butyric acids that were highly relevant with Faecalibacterium and Coprococcus. After fermentation, the relative abundances of Bacteroides uniformis (0.03%) and Akkermansia muciniphila (0.13%) were only upregulated by QRR among all fermentation groups, leading to the enrichments of the corresponding genera. These results further reveal the relationship between flavonoid structures and metabolic characteristics.


Gastrointestinal Microbiome , Litchi , Flavonols , Quercetin/analysis , Litchi/chemistry , Fermentation , Flavonoids
14.
Biomolecules ; 13(6)2023 06 08.
Article En | MEDLINE | ID: mdl-37371542

Malus baccata (L.) Borkh. is an important wild species of Malus. Its rich variation types and population history are not well understood. Chloroplast genome mining plays an active role in germplasm identification and genetic evolution. In this study, by assembly and annotation, six complete cp genome sequences, ranging in size from 160,083 to 160,295 bp, were obtained. The GC content of stable IR regions (42.7%) was significantly higher than that of full length (36.5%) and SC regions (LSC-34.2%, SSC-30.4%). Compared with other Malus species, it was found that there were more sites of polymorphisms and hotspots of variation in LSC and SSC regions, with high variation sites including trnR/UCU-atpA, trnT/UGU-trnL/UAA, ndhF-rpl32 and ccsA-ndhD. The intraspecific and interspecific collinearity was good, and no structural rearrangement was observed. A large number of repeating elements and different boundary expansions may be involved in shaping the cp genome size. Up to 77 or 78 coding genes were annotated in the cp genomes of M. baccata, and high frequency codons such as UUA (Leu), GCU (Ala) and AGA (Arg) were identified by relative synonymous codon usage analysis. Phylogeographic analysis showed that 12 individuals of M. baccata clustered into three different groups with complex structure, whereas variant xiaojinensis (M.H. Cheng & N.G. Jiang) was not closely related to M. baccata evolutionarily. The phylogenetic analysis suggested that two main clades of different M. baccata in the genus Malus were formed and that I and II diverged about 9.7 MYA. In conclusion, through cp genome assembly and comparison, the interspecific relationships and molecular variations of M. baccata were further elucidated, and the results of this study provide valuable information for the phylogenetic evolution and germplasm conservation of M. baccata and Malus.


Malus , Humans , Phylogeny , Molecular Structure , Genome Size , Genomics/methods , Evolution, Molecular
15.
Food Chem ; 422: 136225, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37156018

Longan pulp polysaccharide is a bioactive component with prebiotic activity and intestinal barrier protection. This study aimed to evaluate the influence of digestion and fermentation on the bioavailability and intestinal barrier protection of polysaccharide LPIIa from longan pulp. The molecular weight of LPIIa didn't change significantly after gastrointestinal digestion in vitro. After fecal fermentation, 56.02% of LPIIa was consumed by gut microbiota. The short-chain fatty acid level in LPIIa group was 51.63% higher than that in blank group. LPIIa intake also increased short-chain fatty acid production and G-protein-coupled receptor 41 expression in the colon of mice. Moreover, LPIIa improved the relative richness of Lactobacillus, Pediococcus, and Bifidobacterium in colon content. Compared to LPIIa, fecal fermented LPIIa better protected intestinal epithelial barrier by increasing Zonula occludens-1 expression. These results provided an important basis for the design of functional food based on longan polysaccharides to prevent intestinal barrier damage related diseases.


Gastrointestinal Microbiome , Animals , Mice , Gastrointestinal Microbiome/physiology , Polysaccharides/pharmacology , Polysaccharides/metabolism , Feces/microbiology , Fatty Acids, Volatile/metabolism , Fermentation , Digestion
16.
Free Radic Biol Med ; 205: 13-24, 2023 08 20.
Article En | MEDLINE | ID: mdl-37247699

Cytochrome c oxidase, also known as complex IV, facilitates the transfer of electrons from cytochrome c to molecular oxygen, resulting in the production of ATP. The assembly of complex IV is a tightly regulated and intricate process that entails the coordinated synthesis and integration of subunits encoded by the mitochondria and nucleus into a functional complex. Accurate regulation of translation is crucial for maintaining proper mitochondrial function, and defects in this process can lead to a wide range of mitochondrial disorders and diseases. However, the mechanisms governing mRNA translation by mitoribosomes in mammals remain largely unknown. In this study, we elucidate the critical role of PET117, a chaperone protein involved in complex IV assembly, in the regulation of mitochondria-encoded cytochrome c oxidase 1 (COX1) protein synthesis in human cells. Depletion of PET117 reduced mitochondrial oxygen consumption rate and impaired mitochondrial function. PET117 was found to interact with and stabilize translational activator of COX1 (TACO1) and prevent its ubiquitination. TACO1 overexpression rescued the inhibitory effects on mitochondria caused by PET117 deficiency. These findings provide evidence for a novel PET117-TACO1 axis in the regulation of mitochondrial protein expression, and revealed a previously unknown role of PET117 in human cells.


Electron Transport Complex IV , Saccharomyces cerevisiae Proteins , Humans , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Processing, Post-Translational , Cell Nucleus/metabolism , Saccharomyces cerevisiae Proteins/genetics
17.
Front Plant Sci ; 14: 1065032, 2023.
Article En | MEDLINE | ID: mdl-36890893

Apomixis is the asexual reproduction through seeds that leads to the production of genetically uniform progeny. It has become an important tool in plant breeding because it facilitates the retention of genotypes with desirable traits and allows seeds to be obtained directly from mother plants. Apomixis is rare in most economically important crops, but it occurs in some Malus species. Here, the apomictic characteristics of Malus were examined using four apomictic and two sexually reproducing Malus plants. Results from transcriptome analysis showed that plant hormone signal transduction was the main factor affecting apomictic reproductive development. Four of the apomictic Malus plants examined were triploid, and pollen was either absent or present in very low densities in the stamen. Variation in the presence of pollen was associated with variation in the apomictic percentage; specifically, pollen was absent in the stamens of tea crabapple plants with the highest apomictic percentage. Furthermore, pollen mother cells failed to progress normally into meiosis and pollen mitosis, a trait mostly observed in apomictic Malus plants. The expression levels of meiosis-related genes were upregulated in apomictic plants. Our findings indicate that our simple method of detecting pollen abortion could be used to identify apple plants that are capable of apomictic reproduction.

19.
Vaccines (Basel) ; 11(2)2023 Feb 12.
Article En | MEDLINE | ID: mdl-36851298

China's recent termination of strict COVID-19 control necessitates taking a booster vaccine shot as a precaution against the pandemic as quickly as possible. A large body of research has examined people's attitudes toward and intentions for the booster shot. However, most studies failed to explore how China's sociopolitical context has shaped their attitude regarding the booster jab take-up. The current study utilizes data from a national survey adopting quota sampling to analyze the Chinese public's medical and non-medical considerations to determine their intention for the third dose of the COVID-19 vaccine. The study found that thanks to China's initial successful lockdown policies, personal risk and benefit perceptions did not dominate their views regarding booster vaccination. Instead, respondents' gender, nationalism, endorsement of the zero-COVID policy, self-efficacy regarding vaccination, and perceived infection severity were the major factors underlying their booster shot intention. The situation highlights how the politicized context of China's COVID-19 control has impacted people's plans to practice preventive behaviors. It is necessary to offset the negative consequences. One strategy is to educate the Chinese public with more medically relevant information to help them make rational choices regarding vaccination and other protective measures. On the other hand, such education can utilize this nationalistic mental status to enhance the persuasion effect.

20.
Vaccine X ; 13: 100263, 2023 Apr.
Article En | MEDLINE | ID: mdl-36683778

Introduction: China's loosening its COVID-19 controls highlighted its insufficiency in vaccination protection. Mandatory vaccination might be necessary if the gap cannot be filled over a short time. However, few studies have explored how Chinese people view the COVID-19 vaccine mandates, let alone placing such views in the country's highly politicized context. Material and methods: The current study utilizes data from a national survey adopting quota sampling to analyze the Chinese public's medical and non-medical considerations when judging compulsory COVID-19 vaccination (n = 1,523). The survey was conducted between 1 and 8 April 2021. All adults aged 18 years and older were eligible to take part. The survey included sociodemographic details, perceived susceptibility to infection, perceived vaccine benefit, attitudes to vaccination policies, nationalism, beliefs in various conspiracy theories and science literacy. Multiple regression analyses were done to examine factors associated with the attitude to COVID-19 vaccine mandates. Results: The study reveals that personal risk and benefit perceptions did not dominate the Chinese public's attitude toward vaccination mandates. Instead, nationalism was relatively strongly associated with their willingness to accept mandatory vaccination. Contrary to studies in the West, various conspiracy beliefs and conspiratorial thinking were robustly related to the support for mandatory vacciniation. Science literacy didn't link to the attitude to vaccination mandates. It only had a weak moderating effect on the influence of conspiratorial thinking on attitudes to the vaccination policies. Conclusions: The results indicated that Chinese people's attitude to the COVID-19 vaccination policy is highly politicized and influenced by conspiracy theories. Given the potentially massive impacts of the COVID-19 infection, we need to educate the Chinese public with more medically valuable and relevant information to help them make sound decisions regarding vaccination. Meanwhile, we can adopt nationalistic tones to improve the persuasion effect, but misinformation during the process must be overcome.

...